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1. Introduction, PP, moving poles

Every solution of a linear differential equation over C(z), e.g.,

y (n) + an−1y
(n−1) + · · ·+ a1y

(1) + a0y = 0, aj ∈ C(z)

admits analytic continuation outside the singular points.

This property for ordinary nonlinear differential equations
over C(z) has the name Painlevé property (PP) and can be
formulated as:

there is a finite set S ⊆ C ∪ {∞} such that any local
solution admits an analytic continuation involving poles
outside the set S . The poles can be anywhere and are called
moving poles.
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2. Isomonodromy
The search for equations (of order 2) with PP started before
1900. It was soon realized that an isomonodromic family of
linear differential equations, parametrized by t, produces a
nonlinear differential equation over C(t) with PP.

Here isomonodromic means “with constant monodromy”. By
“monodromy” we mean the combination of the usual
topological monodromy of solutions along closed paths, the
Stokes matrices for irregular singular points and links (i.e.,
connections).

Questions:
▶ Is every (nonlinear) differential equation with PP induced

by isomonodromy?
▶ How to produce isomonodromic families?
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3. The Riemann–Hilbert method

The main theme in this talk is the search for isomonodromy
and the computation of the induced equations which we will
call Painlevé type equations.

We restrict ourselves to families M of linear differential
equations over C(z); in other words, to connections on P1.
Such a family M is given by the data:
dimension of the bundles, position of the singular points, the
type of the singularities, and possibly something more.

The given data also prescribe the possibilities for topological
monodromy, Stokes matrices and links.
This defines a space R of analytic data.
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4. RH , M, R and Lax pair

Rough description of the RH method (examples later):

The Riemann–Hilbert morphism RH : M → R associates to
each connection its analytic data.
The fibres of RH are the isomonodromic families.

Requirement: fibres have dim. 1, parametrized by variable t.
Matrix entries in an isomonodromic family are analytic
functions of t. They satisfy a nonlinear differential equation
which is known to have PP.

Last step: explicit computation of this differential equations by
means of what is called a Lax pair.
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5. A quick look at singularities

Consider a differential module M (equivalently, a differential
operator z d

dz
+ A) at z = ∞.

M is “regular singular” if A can be chosen to be constant.
Formally, i.e., over a finite extension of C((z−1)), one can
write M as direct sum of modules represented by operators of
the form (here size 4)

z
d

dz
+


q + a 0 0 0

1 q + a 0 0
0 1 q + a 0
0 0 1 q + a

 , q ∈ z1/mC[z1/m], a ∈ C.

The q’s are called eigenvalues.
The Katz invariant is maxq degz(q).
The formal monodromy sends z1/m to e2πi/mz1/m and acts on
the decomposition of M .
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6. The tuples (V , {Vq}, γV ) and Stokes {Std}

A tuple is the data of the formal classification.

V = ⊕qVq is the solution space at z = ∞, the subspace Vq

(for q an eigenvalue) corresponds to the operator above.
Furthermore, γV ∈ GL(V ) is the formal monodromy.
Property: γV (Vq) = Vγq, where γ is the automorphism of the
algebraic closure of C((z−1)) given by γ(zλ) = e2πiλzλ.

The analytic classification is obtained by the addition of
Stokes matrices Std ∈ GL(V ) for the directions d ∈ R.
One has singular directions d1<d2< · · ·<dr ∈ [0, 1) = R/2πZ
having the properties: Std+1 = γ−1

V StdγV ; Std = id for
d ̸∈ {d1, d2, . . . , dr}+ Z; Std has a special form and the
monodromy identity: mon∞ = γV ◦ Stdr ◦ · · · ◦ Std1 with
mon∞ is the monodromy around z = ∞.
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7. First order equation over C(z) having PP

The well known classification is:
(a). y ′ = ay2 + by + c with a, b, c ∈ C(z) and y ′ = dy

dz
(Riccati),

(b). (y ′)2 = a(y3 + by + c) with b, c ∈ C, a ∈ C(z) (Weierstrass),
(c). F (y ′, y , z) = 0 equivalent to dy

dz
= 0 after a finite extension of C(z).

Are these equations induced by isomonodromy?

There are no families of first order equations y ′ = ay or y ′ = b
that produce first order equatons with PP!In contrast, families
of Risch equations y ′ + ay + b = 0 induce some cases of (a).

In matrix form δ + A = δ +
(

a b
0 0

)
, where δ is the derivation

under consideration. For a family of matrix Risch differential
operators δ + A, parametrized by a variable t, the existence of
a Lax pair {δ + A, d

dt
+ B} is equivalent to B =

(
c d
0 0

)
and

the equations d
dt
(a) = δ(c) and d

dt
(b) = δ(d) + ad − bc .
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8. M and R defined by conditions on M ∈ M

The data and conditions on M over K := C(X ) ⊃
finite

C(z) are:

(a). An exact sequence 0 → F → M → 1 → 0, with F of
dimension 1 and 1 is the trivial 1-dimensional module.
(b). A finite unspecified set S of singular points and for each
s ∈ S , the “Katz invariant” of the differential module M ⊗ Ks .
(c) The monodromy of a module M ∈ M consists (by
definition) of the topological monodromies for chosen
generators of the fundamental group of X \ S and the Stokes
matrices at the irregular singular points. These data form an
element in G r for some r where G = {

(
α β
0 1

)
|α, β ∈ C, α ̸= 0}.

These data and relations define the monodromy space R.
Recall requirement:
the fibres of the surjective RH : M → R have dimension 1.
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9. Finding the families with properties (a)–(c).

The (connected components of the) fibres of RH are
parametrized by what RH forgets, i.e., the position of the
points S and the coefficients of the eigenvalue q (if s is
irregular). The cases are classified modulo the action of PGL2

on P1. Hence S has at most 4 points.

(i). In case S has four points, these can be chosen to be
0, 1,∞, t. The (connected components of the) fibres of RH
are parametrized by t and all the singularities are regular
singular. Thus the 1-dimensional submodule F is given by
d
dz

+ a with a = a0
z
+ a1

z−1 +
at
z−t

with constants a0, a1, at . The
group S3 of the automorphisms of P1 permuting {0, 1,∞},
also permutes the various d

dz
+ a.
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10. The families with properties (a)–(c)

(ii). Suppose #S = 3. Then we may suppose S = {0, 1,∞}
and 0, 1 regular singular and ∞ with Katz invariant 1.

This leads to F given by d
dz

+ a with a = a0
z
+ a1

z−1 + t,
where t is the coefficient of q at the point z = ∞.

Similar arguments give the list for the 1-dimensional
submodules F :

(i). d
dz

+ a0
z

+ a1
z−1 + at

z−t
. S = {0, 1,∞, t}. Related to P6.

(ii). d
dz

+ a0
z

+ a1
z−1 + t. S = {0, 1,∞}, ∞ Katz invariant 1. Related to P5.

(iii). z d
dz

+ a0 + tz + z2. S = {0,∞}, ∞ Katz invariant 2. Related to P4.
(iv). z d

dz
+ t

z
+ a0 + z. S = {0,∞}, both Katz invariant 1. Related to P3.

(v). d
dz

+ t + z2. S = {∞} with Katz invariant 3. Related to P2.
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11. The induced nonlinear equations

For each of the cases (i)–(v), we computed an operator
representing a general M ∈ M, the corresponding data in R,
the Lax pair, and finally the resulting nonlinear first order
equation.

One obtains

(i) f ′ = a0
t
f 2 + ( a0+a2

t
− a1+a2

t−1 )f − a1
t−1 . The Riccati equation of the hypergeometric

equation 2F1(a2, a0 + a1 + a2, 1 − a0 − a2; t).
(ii) f ′ = − a1

t
f 2 + ( a0+a1+1

t
+ 1)f − 1. The Riccati equation of Kummer’s confluent

hypergeometric equation 1F1(a, c; z).
(iii) b′1 + a0b2

1 − tb1 + 1 = 0. The Riccati equation of the parabolic cylinder functions.
(iv) tb′1 + 1 + (1 − a0)b1 + tb2

1 = 0. The Riccati equation of the Bessel equation.
(v) b′1 + tb2

1 + 1 = 0. The Riccati equation of the Airy equation.

It is not surprising that these equations are in fact equivalent
to the reducible locus of the Painlevé equations P6 − P2.
We now give some details for case (ii).
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12. case (ii), d
dz

+ a0
z

+ a1
z−1 + t, S = {0, 1,∞}, ∞ Katz invariant 1. R

Given our connection d
dz

+
(

a0
z

+ a1
z−1 + t b

0 0

)
, one has

mon0 ·mon1 ·mon∞ = 1 for the monodromies around 0, 1,∞.
The solution space V (∞) at z = ∞ has a basis such that the
monodromy identity looks like mon∞ =

(
g 0
0 1

)(1 x
0 1

)
, with first

matrix the formal monodromy, the second a Stokes matrix.
The other Stokes matrix, which, a priori, has the form

(1 0
∗ 1

)
, is

the identity, due to the form of the differential operator.

On the open subset x ̸= 0, one normalizes x to 1, by base
change. After that, the basis of V (∞) is unique up to
multiplication of the base vectors by the same scalar. On this
basis the relation mon0 ·mon1 ·mon∞ = 1 becomes(
g0 x0
0 1

)(
g1 x1
0 1

)(
g g
0 1

)
=

(1 0
0 1

)
. Thus g0g1g = 1 and

g0x1 + g1x0 = −1.
It follows that R has dimension 3 and the parameter space P
(represented by the variables g0, g1) has dimension 2.
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13. case (ii), d
dz

+ a0
z

+ a1
z−1 + t, S = {0, 1,∞}, ∞ Katz invariant 1. Lax pair

A good choice for the Lax pair is
d
dz

+
(

a0
z

+ a1
z−1 + t b0

z
+ b1

z−1 + b2
0 0

)
and

d
dt
+
(

c0
z

+ c1
z−1 + c2z

d0
z

+ d1
z−1 + d2z

0 0

)
.

This yields

b′0 = 0, b′1 =
−tb1 + a1b2

t
, b′2 =

−tb0 − tb1 + (a0 + a2 + 1)b2

t
.

After normalization to b0 = 0 one obtains for
(
b1
b2

)
the matrix

differential equation d
dt
+
(

1 1
− a1

t
− a0+a1+1

t

)
. This is a matrix

differential equation for Kummer’s confluent hypergeometric
equation 1F1(a, c ; z). The first order differential equation for
f = b2

b1
obtained from isomonodromy is

f ′ = −
a1

t
f 2 + (

a0 + a1 + 1
t

+ 1)f − 1.
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14. More first order equations from
isomonodromy?

Note: the above cases of first order equations induced by
isomonodromy came from subfamilies of reducible families of
connections of rank two on P1. We describe below an
exceptional case of subfamilies of a reducible family of
connections M of rank three on P1. Our two questions remain
unanswered.

M is the moduli space of connections on the free bundle of
rank 3 on P1 which is induced by the set of differential
modules M over C(z) defined by the conditions:
(a). dimM = 3, Λ3M = 1, singular points z = 0 and z = ∞,
(b). z = 0 is regular singular and z = ∞ is irregular singular
and has eigenvalues z , tz , (−1 − t)z .
This moduli space has dimension 7 (counting t as variable).
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15. A differential operator for M

It can be shown that the matrix differential operator

z
d

dz
+

 z + a0 v1 v2
1 tz + a1 1
v3 v4 (−1 − t)z − a0 − a1


represents a Zariski open affine, dense subset of M. This

operator (with v1, . . . , v4 as functions of t; the a0, a1 are
parameters) is completed to a Lax pair with the operator
d
dt
+ B0(t) + zB1(t). There are explicit formulas for v ′

1, . . . , v
′
4.

One observes that the differential operator has three reducible
subfamilies of M, namely given by



16. reducible subfamilies
(i) v3 = v4 = 0, (ii) v1 = v2 = 0, (iii) v1 = v4 = 0. The
differential equations for these families are:

(i) v ′
1 = 0 and v ′

2 =
3(2t + 1)v2

2 − 3(t + 2)v1 + 9(−a0t + a1)v2

(t − 1)(2t + 1)(t + 2)
.

(ii) v ′
4 = 0 and v ′

3 =
3(t − 1)v2

3 + 9(a0 − a1)v3 + 3(t + 2)v4
(t − 1)(2t + 1)(t + 2)

.

(iii) v ′
2 =

(6t + 3)v2
2 − 3v3(t − 1)v2 − 3v1(t + 2) + (−9a0t + 9a1)v2

(t − 1)(2t + 1)(t + 2)
and

v ′
3 =

(3t − 3)v2
3 + (−6t − 3)v2v3 + (9a0t − 9a1)v3

(t − 1)(2t + 1)(t + 2)
.

(i) and (ii) are examples of Riccati equations obtained by
isomonodromy. In case (iii), the term v2v3 is a parameter (and
thus a constant). Therefore the two equations are “equivalent”
Riccati equations.



17. Case studies. The Painlevé equations

Each of the equations P1 − P5 is derived from a family
RH : M → R. Example: Painlevé P1.
M defined by dimM = 2, Λ2M trivial, the only singularity is
∞ and has Katz invariant 5/2. The eigenvalues at ∞ are
±(∗z5/2 + ∗z3/2 + ∗z1/2) and are normalized by the
transformation z 7→ az + b to ±(z5/2 + tz1/2).

The monodromy space R is the space of the Stokes matrices.
There are 5 singular directions j

5 , 0 ≤ j ≤ 4 and the trivial
topological monodromy equals(0 −1

1 0

)( 1 0
x5 1

)(1 x4
0 1

)( 1 0
x3 1

)(1 x2
0 1

)( 1 0
x1 1

)
and so dimR = 2.

R turns out to be an affine non singular cubic surface with
three lines at infinity.



18. Continuation of Painlevé 1

The fibres of RH : M → R are parametrized by t. A Zariski
open part of M is represented by the matrix differential

operator d
dz

+

(
p t + q2 + qz + z2

z − q −p

)
.

This is completed to a Lax pair by d
dt
+
(0 2q+z

1 0

)
.

One obtains the equations dq
dt

= 2p, dp
dt

= 3q2 + t and finally
q′′ = 6q2 + 2t, the first Painlevé equation.



19. A new isomonodromic family of dimension 2;
a companion of P1

M is defined by: determinant trivial; regular singular at z = 0;
eigenvalues ±(z5/2 + t

2z
1/2) at z = ∞.

R ∼= C5 (again 5 Stokes matrices, no relations).
The fibres of M → R are parametrized by t.
R → P ∼= C= the parameterspace = the characteristic
polynomial of the monodromy matrix at z = 0.
z d
dz

+
(0 1
0 0

)
z3 +

(0 b2
1 0

)
z2 +

(
a1 b1

−b2 −a1

)
z +

(
a0 b0
c0 −a0

)
:

t = b1 − b2
2 + c0, parameter p0 = a2

0 + b0c0.
the Lax pair yields the Painelevé type vector field :
a′0 = 2b2c0 −

p0−a2
0

c0
, c ′0 = 2a0, a′1 = −3b2

2 + 2c0 − t, b′2 = −2a1.



20. Continuation of a companion of P1

c0 = 0 leads to P1. Assume c0 ̸= 0. After elimination only
f := b2 and its derivatives fj := ( d

dt
)jb2, j = 1, 2, 3, 4 survive

and there is one relation:

−2(6f 2−f2+2t)f4 = 288f 5−240f 3f2+192tf 3−24ff1f3+32ff 2
2 −80tff2

+32ft2 + 24f 2
1 f2 − 48tf 2

1 + 48ff1 + f 2
3 − 4f3 + 64p0 + 4

Note that the denominator of f4 := b
(4)
2 is the equation for P1.

This Painlevé type equation is explicit of order four.



21. The full companion of P1

The previous example “companion of P1” is not natural in
some sense. Natural conditions on the modules M ∈ M are:
dimM = 2, Λ2M = 1, z = 0 regular singular,
z = ∞ irregular and Katz invariant 5

2 .
It follows that the eigenvalues are ±(z5/2 + t1

2 z
3/2 + t2

2 z
1/2).

Now RH : M → R forgets the two “time variables” t1, t2.

Now isomonodromy and Lax pairs in two variables t1, t2. The
differential operator z d

dz
+ A(z , t1, t2) commutes with two

operators d
dtj

+ Bj , j = 1, 2. The family of dimension 2+5
depends on t1, t2 and a0, a1, b0, b1, b2 variables. With the
notation df = df

dt1
dt1 +

d
dt2

dt2 the Painlevé equations are:



22. Painlevé equations for the full companion of P1

d(a0) =
1

48
{16b4

2−16b3
2t1+4b2t

3
1−t41−48b1b

2
2+32b1b2t1−4b1t

2
1+32b2

2t2−16b2t1t2−16b0b2+

8b0t1+32b2
1−48b1t2+16t22}dt1+{−2b3

2+3b2
2t1−

3b2t21
2

+
t31
4

+2b1b2−b1t1−2b2t2+t1t2+b0}dt2

d(a1) =
1

24
{−16b3

2 +20b2
2t1 −4b2t

2
1 − t31 +16b1b2 −16b1t1 −16b2t2 +12t1t2 +8b0}dt1

+{b2
2 − 2b2t1 + 3/4(t21 ) + 2b1 − t2}dt2

d(b0) =
1

6
{−4a0b

2
2 + a0t

2
1 + 8a0b1 − 4a0t2 − 4a1b0}dt1 +{(4b2 − 2t1)a0}dt2

d(b1) =
1

6
{−4a1b

2
2+a1t

2
1+4a0b2−2a0t1+4a1b1−4a1t2+2b2−t1}dt1+{4a1b2−2a1t1+2a0+1}dt2

d(b2) =
1

3
{−a1t1 +2a0 +2}dt1 +2a1dt2.

with parameter=p0 = a20 + b0c0.



23. A new hierarchy Mn, related to P3(D8)

For any n ≥ 2, Mn is defined by the differential modules M
over C(z) given by:
(i) dimM = n, ΛnM = 1, i.e., the trivial differential module,
(ii) the only singularities are z = 0 and z = ∞; they are both
irregular singular, totally ramified and have Katz invariant 1

n
.

Part (ii) is made explicit by requiring that z−1/n and its
conjugates are the eigenvalues at z = 0 and t1/nz1/n with
t ∈ C∗ and its conjugates are the eigenvalues at z = ∞.

A direct computation of a differential operator for Mn seems
hardly possible. Therefore we do a trick.



24. Constructing the connection by symmetry
The operator D := z d

dz
+ A of size n × n over C(z), that we

try to construct, is seen as operator on a vector space V of
dimension n over C(z). The extension of D to
W := C(z1/n)⊗ V , also called D, has no ramification.

γ is the automorphism of C(z1/n)/C(z) with
γ(z1/n) = e2πi/nz1/n. σ : W → W is the semi-linear map with
σ(f ⊗ v) = γ(f )⊗ v . Define the trace tr : W → V by
tr(w) =

∑n−1
j=0 σj(w). We expect the following :

There is a basis e0, e1, . . . , en−1 of W such that σ acts as
e0 7→ e1 7→ · · · 7→ en−1 7→ e0 and D has on this basis only
poles of order 1 at z1/n = 0 and at z1/n = ∞. Since
σD = Dσ, D(e0) determines D and D(e0) has the form∑n−1

j=0 (ajz
−1/n + bj + cjz

1/n)ej with aj , bj , cj ∈ C.



25. D on basis B0, . . . ,Bn−2, z
−1Bn−1 of invariants

From the basis e0, . . . , en−1 one constructs a σ-invariant basis
of V , namely B0,B1, . . . ,Bn−1 by Bj = tr(z j/ne0) for
j = 0, . . . , n − 1. The given data for D(e0) induces a formula
z d
dz

+ A for D on the basis B0, . . . ,Bn−2, z
−1Bn−1. There is a

normalization
D(e0) = (z−1/n + b0 + c0z

1/n)e0 +
∑n−1

j=1 (bj + cjz
1/n)ej ,

b0 =
3−n
2n , β = t. The operator E commuting with D, is

σ-invariant and is determined by E (e0) = z1/n ∑n−1
j=0 cjej . Now

we skip many details of the construction which involves also a
computation of the monodromy space R.



26. explicit Lax pair and Painlevé type equations

For general n, the Lax pair is

z d
dz
+


d0 1 0 . 0 f0
f1 d1 1 . 0 0
0 f2 d2 . 0 0
. . . . 1 .

0 . . fn−2 dn−2
1
z

1 0 . 0 fn−1z dn−1

 , t d
dt
+


0 0 0 . 0 f0
f1 0 0 . 0 0
0 f2 0 . 0 0
. . . . 0 .
0 . . fn−2 0 0
0 0 . 0 fn−1z 0


with

∑
dj = 0,

∏
fj = t. The Painlevé type equations are

t
f ′0
f0

= d0−dn−1, t
f ′1
f1

= d1−d0, · · · , t
f ′n−1

fn−1
= dn−1−dn−2+1,

td ′
0 = f1 − f0, td ′

1 = f2 − f1, · · · · · · , td ′
n−1 = f0 − fn−1.



27. The case n = 2 identifies with P3(D8)

The definition of the family of connections M2 coincides with
the well known isomonodromic family for P3(D8). The Lax
pair is z d

dz
+
(

d0
1
z
+ f0

1 + f1z d1

)
, t d

dt
+
(

0 f0
f1z 0

)
with f0f1 = t

and d0 + d1 = 0. The equations are

t
f ′0
f0

= d1−d0, t
f ′1
f1

= d0−d1+1, td ′
0 = f1−f0, td

′
1 = f0−f1.

With the normalization f1 = −1 one obtains the standard
formulas.



28. The Noumi-Yamada hierarchy revisited

For n ≥ 3 one considers a moduli space Mn corresponding to
differential modules M over C(z) with the properties:
(i). dimM = n, ΛnM = 1. The singular points of M are z = 0
and z = ∞.
(ii). z = 0 is a regular singular point
(iii). z = ∞ is irregular, totally ramified and Katz invariant 2

n
.

This implies that z2/n + tz1/n and its conjugates are the
eigenvalues. t ∈ C for odd n, t ∈ C∗ for even n.
Choices of lattices at z = 0 and z = ∞ are needed to assure
the existence of a moduli space.

A direct approach to compute a matrix differential operator D
seems hopeless. However, as before, one can make a guess for
the form of the operator D on a vector space over C(z1/n).



29. The symmetric approach for D

This approach leads to the Lax pair of Noumi and Yamada.
Let e0, . . . , en−1 be a basis of this vector space and let σ
denote the semi-linear automorphism of this vector space such
that σ : e0 7→ e1 7→ · · · 7→ en−1 7→ e0. Define the σ invariant
operator D by the formula

D(e0) = (z2/n + tz1/n)e0 +
n−1∑
i=1

(ai + biz
1/n)ei .

For the operator E := d
dt
+ B such that {D,E} forms a Lax

pair, one makes the guess that E is the σ-invariant operator
with E (e0) = z1/ne0 +

∑n−1
j=1 cjej . Put ω = e2πi/n.



30. Formulas for D and E

One deduces from this the matrix of D with respect to the
basis B0, . . . ,Bn−1 with Bj :=

∑n−1
k=0 σ

k(z j/ne0) for
0 ≤ j ≤ n − 1 and Bn := zB0,Bn+1 := zB1. The formula is

D(Bj ) =
j

n
Bj +

n−1∑
i=1

aiω
−ijBj + tBj+1 +

n−1∑
i=1

biω
−i(j+1)Bj+1 + Bj+2,

with ω = e2πi/n. The formula for E on this basis is

E (Bj) = Bj+1 + (
n−1∑
k=1

ω−kjck)Bj .



31. D and the topological monodromy

The operator D is

z d
dz

+



ϵ0 0 0 ∗ ∗ z zf0
f1 ϵ1 0 0 ∗ 0 z
1 f2 ϵ2 0 ∗ ∗ 0
0 1 f3 ϵ3 0 ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ 1 fn−2 ϵn−2 0
∗ ∗ ∗ 0 1 fn−1 ϵn−1


; ϵj =

j
n
+

∑n−1
i=1 aiω

−ij ;

fj = t +
∑n−1

i=1 biω
−ij .∑

ϵj =
n−1
2 and

∑
fj = nt. The ϵ0, . . . , ϵn−1 are the

parameters of the family. The {e2πiϵj} are the eigenvalues of
the topological monodromy at z = 0. For an isomonodromic
family the ϵj are constant and the f0, . . . , fn−1 are analytic
functions of the parameter t.



32. Matrix form and Painlevé type equations

E =
d

dt
+



g0 0 0 0 ∗ ∗ z
1 g1 0 0 ∗ ∗ 0
0 1 g2 0 ∗ ∗ 0
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
0 0 0 0 1 gn−2 0
0 0 0 0 0 1 gn−1


, gj = (

n−1∑
k=1

ω−kjck ),
∑

gj = 0.

For an isomonodromic family, the {gj} are functions of t and
are in fact eliminated by the Lax pair condition DE = ED. For
n = 5, the Painlevé type differential equations for this Lax pair
are

f ′1 = f1(−f1 − 2f2 − 2f4 + t) + 2ϵ1 + ϵ2 + ϵ3 + ϵ4

f ′2 = f2(−2f1 + f2 − 2f4 − t)− ϵ1 + ϵ2

f ′3 = f3(−2f1 − f3 − 2f4 + t)− ϵ2 + ϵ3

f ′4 = f4(2f1 + 2f3 + f4 − t)− ϵ3 + ϵ4

The general case for odd n is similar. Even n is slightly
different.



33. Besides the two hierarchies there is an interesting Zoo of
Connections for Isomonodromy. This is work in progress.
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